
TOOLS USA '95
Tutorial Presentation

'BuildingBuilding Models of Multimedia Systems: the idea of maximising re-use with Eiffel'

Peter Ward

IMP University of Leeds UK

Tutorial Outline

This tutorial will present practical experience of using the Eiffel OOPL in the development and
evolution of working prototypes. The focus will be a critique and evaluation of the 'PARIS'
prototype, a software development case study and the latest in a series of prototypes which has
included the 'GPE', 'Media Language' and 'GARDEN'. Meyer mentions specific features which
make Eiffel well suited to software development and re-use. The possibilities for the effective use
of Eiffel facilities will be examined with reference to the real working 'PARIS' project and to the
theoretical commercial benefits of re-use and the construction of user-oriented functional interfaces
and tools for the organisation, distribution and access to multimedia information. The tutorial will
be aimed at software developers, academics, project managers, application developers and
marketing personnel. A pragmatic development methodology for real information product will be
presented from an information systems perspective. There will be a discussion of the design
strategy for the 'PARIS Model, together with any specific metrics of software engineering,
including lines of code re-used and hours of programming time saved) in the 'PARIS' project. The
use of tools and components other than Eiffel 3 will be described in the 'PARIS' project. The pros
and cons of using Eiffel in real world small budget projects will be discussed.

Case Studies, Methodologies and Modelling

A variety of real working models will be shown. Including notions of 'information modelling' and
the design of generic, flexible, enhanceable and distributable object-oriented systems working
closely with users and in real world applications; high quality, configurable and flexible user-
friendly interfaces providing a variety of access and supporting key tasks in information modelling
and communication - proportional to functionality, user-friendly and hiding the underlying
mechanisms from the user and not over-engineered (what you get is what you need).

Structure of Tutorial

The Tutorial will be in three parts -

*please note a re-ordering of the parts

Part One "Introduction to Multimedia Information Systems Modelling";

Part Two "Engineering Object-Oriented Components: 'GPE', 'Media Language', 'GARDEN' and
'Paris'

Part Three "The Information Systems Perspective; Paradigms and Lessons"

TOOLS USA '95

 Paper with reference to Tutorial Presentation

'Building Models of Multimedia Systems: the idea of maximising re-use with Eiffel'Building

Peter Ward
IMP University of Leeds UK

Abstract
The focus of the work to be discussed is the 'Paris Project' - which has been an exercise in 'rapid
application development' - originally started in Eiffel and coming to employ Delphi, a new
programming tool for application development (with a focus on building and delivering multimedia
applications) in the Windows environment. The idea was to continue an evolutionary path of user-
led information modelling tools development which started 5 years ago with C++ in the GPE
Project, and was followed in 1992 with the Eiffel OOPL used in the Media Language and
GARDEN Projects. This series of developments has been presented in terms of a paradigm for
building models of multimedia systems. The latest 'Paris Project' has aimed to translate some
features of the workstation Unix/X11-based tools into the development of a similar tool for the PC-
based Windows platform. The aim was to include and reimplement in a 'multimedia (document)
viewer' a number of key interface features - such as the 'history strip' and 'chunking' in Media
Language, and the 'pages' displayable within the hierarchical browsable, index-linked and
reconfigurable frameworks in GARDEN. One of our ideas was to explore the reality of
maximising re-use with Eiffel in the case of a port to Windows. Basic questions addressed at the
outset e.g. the extent to which code and design re-use would turn out to be real and finding an
effective means to get a handle on Windows, will be compared with the pragmatic solutions to
problems encountered, with a report and demonstration of a working model. This technology
development will be considered within the context of the search for simplicity, elegance and
emergence of working models in a new generation of information systems.

1. Introduction
The tutorial presentation summarised in this paper brings together applied research and
development work over 7 years and is based on practical experience gained from the user-led
development and evolution of a series of working prototypes, culminating with the 'Paris'
information browsing and authoring tool project.

The material is aimed at a wide scope of audience - software developers, academics, project
managers, application designers and marketing personnel. A down-to-earth development approach
for real-world information products will be presented. We also look at practical and commercial
aspects of software re-use, with specific reference to the Eiffel O-O Programming Language.

In the first part of this paper, we present an introduction to Multimedia Information Systems
modelling. TodayÕs hardware has the potential for rich multimedia presentation. What kind of
software components can do justice to the hardware? How do we identify them, and how do they
differ from objects, modules or components in other kinds of applications?

An evolutionary path of user-led information modelling tools development will be illustrated.
Each successive software project at Leeds-IMP has built upon the design of the previous one. The
central theme has been information presentation and management (Ward 1994). In a programme of
applied research started 5 years ago, C++ (Glockenspiel) was employed in the GPE Project (Parrott

and Ward 1991), and this was followed with the employment of the Eiffel OOPL (ISE Eiffel
Version 2.3) which was used in the Media Language and GARDEN Projects (Parrott and Ward
1993; Ward and Parrott 1993; (Howard 1994) . This series of developments has been presented in
terms of a paradigm for building models of multimedia systems (TOOLS Europe95).
MediaLanguage has a sophisticated "chunking" screen model, and required the application
developer to write a program in Media Language to define the information content. GARDEN
provided an alternative full-screen model, dropped the programming (scripting) requirement, and
emphasised information presentation and access and the construction of frameworks. Two Eiffel
Class libraries are at the core of these tools. The X11 Class library provides a simple but powerful
interface to the X11 display system and is available for ISE Eiffel 2.3.4. The Unix Class library
provides access to the underlying features of a Unix process, file/directory paths and network
sockets. The full library is available for ISE Eiffel 2.3.4 and the TowerEiffel compiler. The Tower
code should also work with the Eiffel/S compiler. The Unix process abstraction with a command-
line argument processor is available for the
ISE Eiffel 3.2.4 compiler.

The latest 'Paris Project' has aimed to translate some features of the workstation Unix/X11-based
tools into the development of a similar tool for the PC-based Windows platform. The aim was to
include and reimplement in a 'multimedia (document) viewer' a number of key interface features -
such as the 'history strip' and 'chunking' in Media Language, and the 'pages' displayable within the
hierarchical browsable, index-linked and reconfigurable frameworks in GARDEN.
The 'Paris Project' is taking this technology to the Windows mass-audience, and is a means of
providing advanced information presentation and management
based on the HTML document format as found on the world-wide-web. None of these tools
obsoletes the others. They occupy distinct niches and appeal to different categories of user. Yet the
common thread of "information presentation and management" runs through them and opens up
wide possibilities for re-use.

The information modelling process must define generic, flexible and enhanceable
object-oriented systems which lead to high-quality, configurable, user-friendly applications. Key
factors to achieve this include hiding the underlying mechanisms and avoiding over-engineering
(what you get is what you need).

In the second part of the paper we look at real-world aspects of software re-use. Meyer has
identified specific features of Eiffel which make it well suited to software development and re-use
(Meyer 1988, 1990, 1992). These features are examined with reference to how they affected our
projects. With 'Paris Project' we decided to take an active approach to reuse, and the outcome of
this is described here. An alternative strategy to using Eiffel is discussed in which other tools and
components - principally Delphi (an object-Pascal "rapid application development" environment)
are employed, with a discussion of the relative merits of the contrasting methods.

In the light of experience with a real time small scale project, we will critically examine how an
object-oriented approach and the use of object-oriented tools is a real advantage. Our first idea was
to report our experience in terms of specific metrics (including lines of code re-used and hours of
programming-time saved). We also intended to look at less-easily-measured items such as product
quality and time-to-market, and attempt to quantify the value of any repositories of reusable
software which are being produced. We will critically examine whether re-use has really occurred
and whether it is possible to realise the benefits it promises. A checklist of tips needed to ensure
that the potential benefits can be maximised is presented.

2. The 'Paris Project' - an opportunity for maximising software re-use?
The working 'Paris Viewer' model has been developed in 6 months with a focus on a simple stand-

alone capacity to handle HTML standard material and provide a very simple interface and access to
multimedia materials. Material from 'Eiffel The Language', 'Alice in Wonderland' and 'Postman
Pat' will be illustrated, along with a number of Media Language and GARDEN case studies. The
first experimental object-oriented information modelling tool - the GPE - will also be illustrated.

[Place Pictures Here

GPE x 1 or 2

ML x 1 (ml2) (Weaving) or 2 (ml3) (VUIS)

GARDEN x 1 (good old EFC) or 2 (Access or Amsterdam Class Libraries)]

2.1 Code Reuse
Programmers often think of reuse in terms of "reusing lines of code". In this regard, we were at
somewhat of a disadvantage. MediaLanguage and Garden were written in Eiffel 2.3, and it was
planned to write 'Paris' in the latest version of Eiffel. There are substantial differences between
Eiffel 2.3 and Eiffel 3, and it would not have been possible to reuse any code without conversion.
In this case, we needed to consider wider reuse issues than simply "reusing lines of code".
Environmentalists have a slogan: "Reduce ... Reuse ... Recycle" - in that order of preference. This
same slogan makes a lot of sense for software development.

2.1.1 "Reduce"
The first step, which is often overlooked, is to reduce the amount of code which must be written in
the first place. This is a design-time task that requires great discipline. It is hard to resist the
onslaught of creeping featurism, and the larger the design team - the worse the problem.

A careful design can vastly reduce the size of a project, whilst providing a more elegant, more
smoothly functioning deliverable. As well as a big reduction in development time and cost, the
finished software is likely to run faster, require less storage, install more easily, contain fewer bugs
and require less support.

For the 'Paris Project', we considered our target end-user audience carefully. We deliberately
avoided trying to copy the feature set of other loosely-related tools. To do so would not only have
consigned us to forever playing "catch-up", but it would actually have made the product less usable
in our target market.

We also carefully identified a subset of features that were appropriate to the entry-level version of
the tool, with further features to be added to later versions. This allowed us the possibility of
getting a first working model as a product onto the market very quickly, and to keep it on the market
as an entry-level doorway after other products in the family are released.

Our first commercially-viable release contains perhaps 10% of the code of its competitors, yet
contains all of the functionality that many of our users will require.

Similarly, we have reduced the design effort by freely adapting existing standards wherever
possible. Whereas Media Language and GARDEN used proprietary media modelling formats, we
use standard HTML with a few trivial extensions to support the 'Paris Project', thereby avoiding the
need to design our own formats, and opening up opportunities to reuse other people's HTML
software components.

2.1.2 "Reuse"
Here we refer to the re-use of existing software, without modification but possibly after adaption.
We see two main categories of such re-use: tapping in to components already present at runtime,
and adapting existing components at compile time.

Reusing components at runtime
The 'Paris Project' was designed to be suitable for the mass-market distribution of multimedia
documents, for example by means of CD-ROMs supplied with books. For this application,
Microsoft Windows is the common denominator and we had no need to provide for cross-platform
compatibility with Unix or any other operating system. This has made it possible to aggressively
re-use software which is accessible at runtime -- in particular the Microsoft Windows API. One
should not think of this API as merely a graphics interface. It also provides facilities for keyboard-
handling, decompression, sound, video, installation, configuration management, file and stream I/O,
printing, communications, memory management, palette control, standard data formats, timing etc.

By reusing the available routines wherever possible in the construction of the 'Paris Viewer', we
have greatly reduced the size of our development task. There is a slight price to pay in terms of
conceptual clarity. The available routines are a 'hotch-potch' built up over the years. There is no
consistent design behind them, although recent versions are much improved. This is a small price
to pay compared to the availability of over a thousand routines, most of which are useful and
reliable.

Perhaps some would claim that we have paid too high a price by losing cross-platform
compatibility. Although we have no need for this feature today, might not the future be different?
It is not always possible to cater for cross-platform compatibility when the focus is on delivering
functionality in the short-term. In the case of the 'Paris Project', we are not concerned, because it
seems that any future target platform is likely to support MS-Windows applications at a binary level
or by emulation, enabling us to continue to develop just one version.

Other run-time reuse can be obtained by exploiting shared components in the form of dynamic link
libraries or OLE-2 objects. We have not made use of these in the entry version of the 'Paris Viewer',
although we will look for opportunities to do so in more advanced versions.

Adapting components at compile time
When people talk about software reuse, often they are referring to the adaptation of existing
software at compile time. For example, by inheriting from an existing software component we can
adapt and reuse previously-developed code. With a good collection of software components, most
of an application can be written by simply tying together existing components.

Eiffel has been designed from the start to be a language for writing libraries of reusable
components, and seems likely to fulfil this promise. However, at the time of writing we did not
have access to any suitable libraries other than those which are supplied with the compiler. In
particular, our existing libraries from Media Language and GARDEN were written in a previous
version of Eiffel and could not be inherited from without modification.

Design reuse
A further aspect of reuse does not relate to code at all, but to other aspects of the underlying system
design which can be gleaned from the code.

For example, GARDEN supported a carefully-tailored colour palette specifically optimised for
multimedia applications. Although we did not use that palette unchanged, we derived our base
palette for the 'Paris Project' much faster than if we had designed it from a blank slate.

Our reference source for the GARDEN palette was not the Garden documentation (which gave a
good general overview of the colour system), but rather the GARDEN code which gave an
unambiguous specification of it through its implementation.

2.1.3 "Recycle"
This leads us to the third part of the environmentalist's slogan: "Recycle". Environmentalists know
that recycling is of marginal economic and environmental benefit, and is only desirable by
comparison to disposal. Reduction and reuse are much more worthwhile. Again, a parallel can be
drawn with software development.

Code recycling seemed to be the only way we could get much benefit from our existing code,
written in Eiffel 2.3 under Unix. We critically examined the existing code, and came to the
conclusion that 10% of the programming requirements for Project Paris could be met by a direct
conversion of existing code to the latest version of Eiffel. We estimated that it would take us half as
long to convert and test existing code as it would have taken to write and test completely new code.

Therefore, we expected to save approximately 5% of the programming time and cost of our project
by means of this "code scavenging".

Prior to the ascendancy of object-oriented languages, "code scavenging" was often the only readily
available technique to achieve reuse. Every self-respecting programmer in the sixties had their card
deck of reusable Fortran or Cobol routines!

Although object-oriented languages allow reuse at a much higher level of abstraction, they do not
render code scavenging obsolete where no better technique is applicable.

3. Our latest experience
In the latest phase of the evolutionary series - the 'Paris Project' - we had to change our plans
suddenly in April this year when it became apparent that due to vendor delays there was not yet a
suitable Eiffel compiler under Windows. We decided, reluctantly, to switch to Delphi. The change
proved very smooth for various reasons.

First, we had actively pared our design down to its central essence, so the scale of our work was
much reduced regardless of development language. Second, Delphi proved to be a highly-
functional and efficient development environment combined with an effective programming
language. Third, Delphi is about as close as we could hope to get to Eiffel in another language,
particularly after Borland's recent changes which bring a number of Eiffel-like features to the
language. For example, Delphi objects are references with automatic and transparent dereferencing,
just as in Eiffel. This third reason enabled us to carry on with "code scavenging" to about the same
degree as we had originally planned.

Although Delphi's programming language does not offer all of the benefits of Eiffel (in particular, it
lacks true genericity, multiple inheritance, assertions and garbage collection), it did provide us with
access to the Delphi Visual Component Library which we used extensively. These very useful
components are heavily parameterised and may be adapted interactively at design time.

4. Conclusion
Reuse is a multi-faceted aspect of software development. One should look everywhere for reuse
opportunities, because there are many ways to gain its benefits.

In terms of the evolution of the series of "information modelling tools" - the 'GPE' is classical

object-orientation. Very like a visual smalltalk with a little compile-time static typing thrown in for
good measure. GARDEN, with its in-built framework, provided for 'information modelling' in
terms of frameworks - the framework is information modelling. The rest is 'model visualisation'.
Both are necessary to really understand a problem and provide a mechanism.

Object-orientation is an enabling technology, it allows good developers to achieve new levels of
productivity (Rambaugh 1991). Poor developers will still be poor, hiding behind bad practice and
dubious processes.

Essentially with the tools - Media Language and GARDEN - there has been a reuse of ideas but
little direct code reuse. This is 'developer reuse' and is the commonest form of reuse. The same
would have happened if the programs had been written entirely in C, LISP, COBOL or Ada. Key
ideas from these tools have been reimplemented in the construction of the 'Paris Viewer' and the
embedded framework. The earlier tools have enabled the manipulation of 'display objects' which
were only superficially 'object-oriented' in the usual sense of the term (GPE is the exception).

Eiffel defines precisely what is an 'argument' and what is a 'parameter' (with an argument attached
to a class feature whereas a parameter is attached to a generic class). In other languages these two
words are used interchangeably. The clear separation aids clarity enormously. Eiffel is a small yet
powerful OOPL - providing two very important and basic features: assertions and simple
relationships (client-server and descendent ancestor). However, Eiffel has disadvantages too. It is a
single executable, and its memory requirements are considerable - memory is never returned to the
operating system. Although the working set does reduce as the garbage collector does it's work, our
experience is that _really_ using X and the typical Eiffel development environment require at least
24Mb of memory and preferably 32Mb. Otherwise the compiler causes intolerable swapping and
reduces processor utilisation to less than 50%. This is no good for any sort of rapid development.
Unfortunately this is the price to pay for a powerful language with a monolithic
compiler/development environment.

Under Windows the problems are likely to be exacerbated. Windows is not renowned for it's
excellent memory management. Real memory above 16Mb is not used effectively and the paging
algorithm is primitive. The sheer size of the typical Eiffel system, if used in anger, tends to bring
Windows to it's knees.

A fundamental question that we faced at the outset of the 'Paris Project' was 'which is more
important the product or the method'? The real challenge to the developer is to identify best way to
get a product out in a rapidly shrinking window of opportunity. It was depressing in the event not
being able to use Eiffel, but that doesn't mean that other tools e.g. C++ or Delphi cannot be used in
the Eiffel style. Important constraints appeared to be restriction to protected and public, only using
single inheritance, and trying hard not to miss assertions. Undoubtedly, the 'Paris Project' benefited
significantly from the "Eiffel mind-set" and the application, for example, of pre-conditions in
Delphi which trapped a large number of errors in the main program.

In the 'Paris Project', the construction of a hypermedia application is viewed as requiring elements
from three arenas:

(i) A viewer. This can be thought of as the mechanism by which the user interacts with the
application and by navigating the framework, accesses the content. An interaction should result in
information being transmitted from the document to the user in a structured and meaningful way
(for that user). The way the viewer is built and the interface it offers the user will determine how
easy it is for a particular user to access the information they require. The 'Paris Viewer' draws upon
the research in the area of Human-Computer Interaction, Object Oriented components and

Ergonomics so that its implementation will be attractive and engaging to a human user.

(ii) The content. These can be thought of as the basic building blocks of a hypermedia application,
text, sound, video, graphics and other data types. Style guides for good, clear prose; sound
orchestration; graphic design and filming exist and are widely used in the media industry.
Obtaining good 'stuff' as your content is the first step on the road to a high quality hypermedia
application.

(iii) The framework. This can be thought of as the 'web' upon which the content is woven. The
framework determines the boundaries and the paths a user can take through the application and also
the paths a user may *not* take. The publishing industry has methods of editing a book or a
magazine; educational and training material must be organised to make it more navigable and
possibly easier to understand. Essentially though, this is largely still working on a two-dimensional
surface. A hypermedia framework adds a third dimension and a whole level of complexity
(Gronebaek 1994; Halasz and Schwartz 1990).

Over the past six years IMP has been conducting an ongoing program of applied research in the area
of hypermedia applications and we have built many examples. The focus has mainly been on the
'viewer/reader' end of the above triumvirate, although with the GARDEN project inroads were
made onto the framework area.

The emergence of the world-wide web and the advent of global hypermedia has opened up huge
amounts of content to the mass consumer audience. As anybody who has done even a small amount
of 'net surfing' will have realised, it is desperately easy to get lost or travel endlessly around in
circles in the tangled mesh of links liberally scattered over the web's content. It is clear that the
'framework' needs looking at if the world-wide-web is to fulfil its potential of providing easy access
to information. The questions 'Should I make a link?' and 'How should I make a link?' need
addressing.

The programme of applied research being conducted by the IMP Group continues to seek answers
to these questions and to produce better, higher quality and more accessible hypermedia
applications.

Among the issues raised in the tutorial and summarised in the paper are: user attraction, ease-of-use
and the engagement of the end-user; interactivity, preference and performance; the nature of
information modelling frameworks and mechanisms for the organisation, cross-referencing and
interactive presentation of multimedia information; the dangers of free-association and getting lost
in 'hyperspace'; and using OOT to achieve realistic results in realistic time-frames - to construct
models, frameworks and components, with a potential for enhancement in response to need and
logical evolution an inherent feature of design.

Because multimedia is a relatively new development, many potential applications have yet to be
exploited. The capabilities of the "objects" in our applications often do not become apparent until
the design phase. The analysis phase is scaled down, because there is not yet a real-world model for
many aspects of what we are doing!

The basic aim of the programme of applied research and development aim has been to build
information modelling tools and better mechanisms for accessing and distributing multimedia
information. Eiffel has proved a serious tool in building operational systems in telecommunications
(Osmond 1994), banking and multimedia systems (Parrott 1993). However, in the 'Paris Project' -
a rapid application project with the aim of delivering key simple functionality onto the Windows
platform - another object-oriented tool Delphi provided more immediate leverage.

The Eiffel OOPL presents the possibility of supporting all the stages of development - from analysis
to implementation. The language provides a number of key features and great potential and yet is it
in reality the best tool for building models of multimedia systems? Is it a question of the "perfect
being the enemy of the good"?

5. The future
Reuse never stops with the current project. The most effective reuse is available when it has been
planned for, as in the case of a library which has been designed from the outset to support reuse.

We looked toward the future in two different ways with the 'Paris Project'. First, we expect to
produce software which can be generalised into Delphi Visual Components for the benefit of future
Delphi programmers. Second, we have adopted a coding style within Delphi which closely mimics
our preferred Eiffel style. This has been done with a view to a possible future conversion of our
software to Eiffel.

Acknowledgements
The author is pleased to acknowledge Colin Parrott for the work - software design and engineering -
on the GPE, Media Language and GARDEN, to Graham Lovell of Sun Microsystems for the
support of the Unix/X11 work and to Jayne Gray for her 'lamp lighting' when the going gets tough.

References

Gronbaek K., Hem J.A., Madsen O.L. and Sloth L "Hypermedia Systems: A Dexter-based
architecture" Comm. ACM Special Section: Hypermedia 37 (2) 65-74 (1994)

Halasz F. and M. Schwartz "The Dexter hypertext reference model" In Proc. Hypertext
Standardisation Workshop (Gaithersburg, Md) 95-133 June (1990)

Howard R. "Eiffel Technology Underlies Multimedia Courseware Development Tools" Object
Magazine 3 (6) 36-41 (1994)

Meyer, B "Object-Oriented Software Construction" Prentice-Hall (1988)

Meyer, B "Lessons from the Design of the Eiffel Libraries" Comm. ACM 33 (9) (1990)

Meyer B "Eiffel: The Language" Prentice Hall (1992)

Osmond R. "Experience from a large Object-Oriented Project" TOOLS Europe '94 Technology of
Object-Oriented Languages and Systems, Versailles Prentice Hall (1994)

Parrott C and Ward P S "The GPE: Graphical Programming Environment - An Object Oriented
Information Modelling Tool". TOOLS Europe '91 Technology of Object-Oriented Languages and
Systems, Versailles, France Prentice Hall (1991)

Parrott C and Ward PS "Media Language: A Rapid Application Development Tool using Eiffel
X11" Proc. of TOOLS USA '93 Technology of Object-Oriented Languages and Systems, Santa
Barbara. Prentice Hall (1993)

Parrott C, Ward PS and Arshad FN "Project Feature: Media Language" in Eiffel World 3 (1) Fall
(1993)

Rambaugh J., M.Blaha, W. Premerlani, F. Eddy, and W. Lorenson "Object-Oriented Modelling and
Design" Prentice Hall Englewood Cliffs, NJ (1991)

Ward P.S. Guest Editor for Current Psychology: Research and Reviews Special Edition
"Hypermedia and Artificial Intelligence" 9 (2) Summer (1990)

Ward P.S., and C. Parrott "GARDEN: an environment for the organisation and distribution of
multiuser multimedia applications on the network" Invited Seminar SUN Microsystems Mt.View
September (1993)

Ward PS 'Distributed Digital Multimedia Materials : towards new document centred user
interfaces?' Interactive Media International, Summer (1994)

